is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
↳ QTRS
↳ DependencyPairsProof
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
APPEND2(l1, l2) -> IFAPPEND3(l1, l2, l1)
Used ordering: Polynomial Order [17,21] with Interpretation:
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
POL( APPEND2(x1, x2) ) = x1 + 1
POL( IFAPPEND3(x1, ..., x3) ) = max{0, x3 - 2}
POL( cons2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
IFAPPEND3(l1, l2, cons2(x, l)) -> APPEND2(l, l2)
is_empty1(nil) -> true
is_empty1(cons2(x, l)) -> false
hd1(cons2(x, l)) -> x
tl1(cons2(x, l)) -> l
append2(l1, l2) -> ifappend3(l1, l2, l1)
ifappend3(l1, l2, nil) -> l2
ifappend3(l1, l2, cons2(x, l)) -> cons2(x, append2(l, l2))